Math 261

Spring 2023
Lecture 55

Feb 19-8:47 AM

Class QE 17

$f(x)=\int_{2}^{\sqrt{x}} \frac{1}{t^{4}+1} d t$

1) find $f(4)=\int_{2}^{\sqrt{4}} \frac{1}{t^{4}+1} d t=\int_{2}^{2} \frac{1}{t^{4}+1} d t=0$
2) Find $f^{\prime}(x)=\frac{1}{(\sqrt{x})^{4}+1} \cdot \frac{1}{2 \sqrt{x}}-\frac{1}{e^{4}+1} \cdot 0$

$$
=\frac{7}{x^{2}+1} \cdot \frac{1}{2 \sqrt{x}}=\frac{7}{2 \sqrt{2}\left(x^{(2+1)}\right)} \sqrt{ }
$$

3) find $f^{\prime}(4)=\frac{1}{2 \sqrt{4}\left(4^{2}+1\right)}=\frac{7}{2 \cdot 2(17)}=\frac{7}{68}$ Ear. of Tan. line at $x=4 \quad \begin{aligned} & y-f(4)=f^{\prime}(4)(x-4)\end{aligned} \quad$| $y=\frac{1}{68} x-\frac{1}{17}$ |
| :--- | $y-0=\frac{1}{68}(x-4)$

Volume of a Solid (No rotation) Consider the enclosed region below
 cross-Ref. is Semi-Circle $\perp x$-axis. Area of Cross-Ref.

$$
\frac{\pi R^{2}}{2}=\frac{\pi y^{2}}{2}=\frac{\pi x}{2}
$$

$$
\left.V=\int_{0}^{4} A(x) d x=\int_{0}^{4} \frac{\pi x}{2} d x=\frac{\pi}{2} \cdot \frac{x^{2}}{2}\right]_{0}^{A(x)}=\frac{\pi x}{2}=\frac{\pi}{4}\left(4^{2}-0^{2}\right)=4 \pi
$$

Consider the enclosed region below

cross-Section is a
square and $\perp Y$-axis.
$A(x)=2 x \cdot 2 x=4 x^{2}$

$$
\begin{aligned}
& \longrightarrow V \int_{0}^{4} 4 x^{2} d y \\
& y=4-x^{2} \rightarrow x^{2}=4-y \\
& V\left.=\int_{0}^{4}(4-y) d y-4\left[4 y-\frac{y^{2}}{2}\right]\right]_{0}^{4} \\
&=4\left[\left(4(4)-\frac{4^{2}}{2}\right)-(0)\right] \\
&=4(16-8)=32 \\
& u_{n i t s}^{3}
\end{aligned}
$$

Consider the enclosed region below

Cross-Section $\perp x$-axis. and each cross-Section is a Square.

$$
\begin{gathered}
V=\int_{0}^{4} A(x) \cdot d x \\
V=\int_{0}^{4}(2 x)^{2} d x \\
\left.4 x^{2} d x=4 \cdot \frac{x^{3}}{3}\right]_{0}^{4}
\end{gathered}
$$

$$
\begin{gathered}
=\frac{4 \cdot 4^{3}}{3}=\frac{256}{3} \\
\text { units }
\end{gathered}
$$

May 24-9:05 AM

Consider the enclosed region by $x^{2}+y^{2}=R^{2} \int_{(0,0)}^{\text {Circle }}$ cross-Sections are Semi-Circle and \perp Patios \mathcal{Y}-axis.
Find the volume. $\quad R \quad r=x=\sqrt{R^{2}-y^{2}}$
Area of cross-Sect.
$\frac{\pi r^{2}}{2}$
$=\frac{\pi}{2}\left(\sqrt{R^{2}-y^{2}}\right)^{2}$
$=\frac{\pi}{2}\left(R^{2}-y^{2}\right)$
$V=\int_{-R}^{R} \frac{\pi}{2}\left(R^{2}-y^{2}\right) d y=\frac{\pi}{2} \cdot 2 \int_{0}^{R}\left(R^{2}-y^{2}\right) d y$

$$
\begin{aligned}
\left.=\pi\left(R^{2} y-\frac{y^{3}}{3}\right)\right]_{0}^{R} & =\pi\left[\left(R^{2} \cdot R-\frac{R^{3}}{3}\right)-(0)\right] \\
& =\pi\left(R^{3}-\frac{R^{3}}{3}\right)=\frac{2 \pi R^{3}}{3}
\end{aligned}
$$

May 24-9:21 AM

Class QE is

Evaluate $\int_{0}^{R} x \sqrt{R^{2}-x^{2}} d x, \quad R \geq 0$ $d u=-2 x d x$
Exact answer only.

$$
\frac{d u}{-2}=x d x
$$

All work must be $\quad x=0 \rightarrow u=R^{2}$

$$
\text { clearly displayed. } \quad x=R \rightarrow u=0
$$

$$
\begin{array}{r}
\int_{0}^{R^{2}} x \sqrt{R^{2}-x^{2}} d x=\int_{R^{2}}^{0} \sqrt{u} \cdot \frac{d u}{-2}=\frac{-1}{2} \int_{R^{2}}^{0} u^{1 / 2} d u \\
\left.\left.=\frac{-1}{2} \cdot-\int_{0}^{R^{2}} u^{1 / 2} d u=\frac{1}{2} \cdot \frac{u^{3 / 2}}{3 / 2}\right]_{0}^{R^{2}}=\frac{1}{3} u \sqrt{u}\right]_{0}^{R^{2}} \\
\\
=\frac{1}{3}\left[R^{2} \sqrt{R^{2}}-0 \sqrt{0}\right]=\frac{R^{3}}{3}
\end{array}
$$

